Impacto medioambiental de la inteligencia artificial: un debate pendiente
DOI:
https://doi.org/10.3145/infonomy.26.001Palabras clave:
Inteligencia artificial generativa, Impacto medioambiental, Green AI, Sostenibilidad, Consumo energético, Consumo de agua, Emisiones de CO2e, Ciencias de la Comunicación, Educomunicación, Transición ecosocial, Políticas globalesResumen
La llegada de la inteligencia artificial generativa ha despertado importantes debates dentro de todos los ámbitos sociales incluyendo el de la comunicación y el de la educación mediática. Esta investigación busca adentrarse en uno de sus efectos menos conocidos: su impacto eco-social sobre el medioambiente. Para ello se ha realizado una revisión documental de las investigaciones que buscan conocer esta realidad, analizando más de 40 publicaciones al respecto. Los estudios encontrados se focalizan especialmente en el consumo energético con sus consecuentes emisiones de gases de efecto invernadero, así como en el consumo de agua. No se atienden, sin embargo, otras fases de su ciclo de vida como la extracción de materias primas o la manufactura de los equipamientos en los que se sostiene la inteligencia artificial. Encontramos una carencia de estudios que tengan una visión global del impacto de todo el ciclo de vida de la inteligencia artificial. Los resultados estarían mostrando un alto impacto de la inteligencia artificial generativa sobre el medioambiente, con peores repercusiones en los países del Sur Global a pesar de no ser sus principales beneficiarios. Los investigadores coinciden en la necesidad de apostar por una “Green AI” frente a la mayoritaria tendencia actual de la “Red AI”, que prima el rendimiento sin tener en cuenta su sostenibilidad. Esta realidad debiera ser tenida en cuenta para actualizar las propuestas de educación mediática que buscan un uso más crítico y sostenible de las herramientas digitales así como para formular propuestas de políticas globales que minimicen tales impactos.Citas
Akyürek, Sarah Yasemin; Kieslich, Kimon; Došenović, Pero; Marcinkowski, Frank; Laukötter, Esther (2022). Environmental sustainability of artificial intelligence. How does the public perceive the environmental footprint of artificial intelligence? Factsheet No. 6 of the Artificial Intelligence Opinion Monitor. https://www.cais-research.de/wp-content/uploads/Factsheet-6-KI-Sustainability.pdf
Alnafrah, Ibrahim (2025). The two tales of AI: A global assessment of the environmental impacts of artificial intelligence from a multidimensional policy perspective. Journal of Environmental Management, vol. 392, 126813. https://doi.org/10.1016/j.jenvman.2025.126813
Alonso, Amparo (2024). Inteligencia artificial verde y responsable. Un nuevo paradigma para un futuro más sostenible. Celebrada el 6 de marzo en la Real Academia de Ciencias Exactas, Físicas y Naturales. https://www.youtube.com/watch?v=q6NuWbyY2RE
Altieri, Miguel A.; Nicholls, Clara Inés (2020). Agroecology and the emergence of a post COVID-19 agriculture. Agriculture and Human Values, vol. 37, pp. 525–526. https://doi.org/10.1007/s10460-020-10043-7
Alzoubi, Yehia Ibrahim; Mishra, Alok (2024). Green artificial intelligence initiatives: Potentials and challenges. Journal of Cleaner Production, vol. 468. https://doi.org/10.1016/j.jclepro.2024.143090
Brevini, Benedetta (2020). Black boxes, not green: Mythologizing artificial intelligence and omitting the environment. Big Data & Society, 1–5. https://doi.org/10.1177/2053951720935141
Castro, Daniel (2024). Rethinking concerns about AI’s energy use. Center for Data Innovation. https://www2.datainnovation.org/2024-ai-energy-use.pdf
Crawford, Kate (2021). Atlas of AI: Power, politics, and the planetary costs of artificial intelligence. Yale University Press.
Dauvergne, Peter (2020). AI in the wild: Sustainability in the age of artificial intelligence. Cambridge, Massachusetts: The MIT Press.
Dauvergne, Peter (2022). Is artificial intelligence greening global supply chains? Exposing the political economy of environmental costs. Review of International Political Economy, 29:3, pp. 696-71. https://doi.org/10.1080/09692290.2020.1814381
De Vries, Alex (2023). The growing energy footprint of artificial intelligence. Joule, 7 (10), pp. 2191-2194. https://doi.org/10.1016/j.joule.2023.09.004
Duarte, Fabio (2025). Number of ChatGPT users (November 2025). https://explodingtopics.com/blog/chatgpt-users
Europa Press (2023). Una consulta en ChatGPT consume tres veces más energía que en el buscador de Google. 28/07/2023.
European Parliament (2023). Amendments adopted by the European Parliament on 14 June 2023 on the proposal for a regulation of the European Parliament and of the Council on laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending certain Union legislative acts. https://www.europarl.europa.eu/doceo/document/TA-9-2023-0236_EN.html
European Union (2021). Proposal for a regulation of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (Artificial intelligence act) and amending certain Union legislative acts. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206
Fernández-Durán, Ramón; González-Reyes, Luis (2018). En la espiral de la energía. Vol. II, Colapso del capitalismo global y civilizatorio (2ª ed). Libros en Acción; Baladre.
Flores-Vivar, Jesús; García-Peñalvo, Francisco-José (2023). Reflexiones sobre la ética, potencialidades y retos de la inteligencia artificial en el marco de la educación de calidad (ODS4). Comunicar, 74, pp. 37-47. https://doi.org/10.3916/C74-2023-03
González-de-Eusebio, Javier; Carbonell, Alejandro; Gertrudix, Manuel; Tucho, Fernando (2021). La competencia digital docente como clave para un consumo sostenible de las TIC en el contexto de la crisis climática global. Revista de educación ambiental y sostenibilidad, 3(2), 2602. https://doi.org/10.25267/Rev_educ_ambient_sostenibilidad.2021.v3.i2.2602
Guldner, Achim; Murach, Julien (2023). Measuring and assessing the resource and energy efficiency of artificial intelligence of things devices and algorithms. In: Wohlgemuth, V., Naumann, S., Behrens, G., Arndt, HK., Höb, M. (eds). Advances and New Trends in Environmental Informatics. Enviroinfo 2022. Progress in IS. Cham: Springer. https://doi.org/10.1007/978-3-031-18311-9_11
Guo, Qingbin; Peng, Yanqing; Luo, Kang (2025). The impact of artificial intelligence on energy environmental performance: Empirical evidence from cities in China. Energy Economics, vol. 141, 108136. https://doi.org/10.1016/j.eneco.2024.108136
Henderson, Peter; Hu, Jieru; Romoff, Joshua; Brunskill, Emma; Jurafsky, Dan; Pineau, Joelle (2020). Towards the systematic reporting of the energy and carbon footprints of machine learning. Journal of Machine Learning Research 21, pp. 1-43. https://arxiv.org/abs/2002.05651
International Energy Agency (2017). Digitalisation & Energy. https://www.iea.org/reports/digitalisation-and-energy
Jackson, Tim (2016). Prosperity without growth. 2nd edition. London: Routledge. https://doi.org/10.4324/9781315677453
Kshetri, Nir (2024). The environmental impact of artificial intelligence. IT Professional, vol. 26, n. 3. https://doi.org/10.1109/MITP.2024.3399471
Kwame Nti, Emmanuel; Cobbina, Samuel Jerry; Attafuah, Eunice Efua; Opoku, Evelyn; Gyan, Michael Amoah (2022). Environmental sustainability technologies in biodiversity, energy, transportation and water management using artificial intelligence: A systematic review. Sustainable Futures, vol. 4, 100068. https://doi.org/10.1016/j.sftr.2022.100068
Li, Pengfei; Yang, Jianyi; Islam, Mohammad A.; Ren, Shaolei (2023). Making AI less “thirsty”: Uncovering and addressing the secret water footprint of AI models. arXiv. https://arxiv.org/abs/2304.03271v3
Ligozat, Anne-Laure; Lefevre, Julien; Bugeau, Aurélie; Combaz, Jacques (2022). Unraveling the hidden environmental impacts of AI solutions for environment. Life cycle assessment of AI solutions. Sustainability, 14, 5172. https://doi.org/10.3390/su14095172
Ligozat, Anne-Laure; Luccioni, Sasha (2021). A practical guide to quantifying carbon emissions for machine learning researchers and practitioners. [Research report] MILA; LISN. 2021. hal-03376391. https://hal.science/hal-03376391/document
López, Antonio (2014). Greening media education. New York: Peter Lang.
López, Antonio (2021). Ecomedia literacy: Integrating ecology into media Education. New York: Routledge.
Luccioni, Alexandra Sasha; Hernández-García, Alex (2023): Counting carbon: A survey of factors influencing the emissions of machine learning. arXiv. https://arxiv.org/abs/2302.08476v1
Luccioni, Alexandra Sasha; Viguier, Sylvain; Ligozat, Anne-Laure (2022). Estimating the carbon footprint of BLOOM, a 176b parameter language model. arXiv. https://arxiv.org/abs/2211.02001v1
Luers, Amy; Koomey, Jonathan; Masanet, Eric; Gaffney, Owen; Creutzig, Felix; Lavista Ferres, Juan; Horvitz, Eric (2024). Will AI accelerate or delay the race to net-zero emissions? Nature, 628 (8009), pp. 718–720. https://www.nature.com/articles/d41586-024-01137-x
Maxwell, Robert; Miller, Toby (2012). Greening the media. Oxford: Oxford University Press.
Moore, Jason W. (2020). El capitalismo en la trama de la vida: Ecología y acumulación de capital. Traficantes de Sueños.
Nishant, Rohit; Kennedy, Mike; Corbett, Jacqueline (2020). Artificial intelligence for sustainability: Challenges, opportunities, and a research agenda. International Journal of Information Management, vol. 53, 102104. https://doi.org/10.1016/j.ijinfomgt.2020.102104
Noticias Financieras (2024). The environmental impact of artificial intelligence: to write 100 words it consumes the energy of 14 LED lights on for one hour. En: CE Noticias Financieras, English ed.; Miami. 3 oct 2024.
O’Brien, Matt; Fingerhut, Hanna (2023). Artificial intelligence technology behind ChatGPT was built in Iowa — with a lot of water. The Associated Press, September 9, 2023. https://apnews.com/article/chatgpt-gpt4-iowa-ai-water-consumption-microsoft-f551fde98083d17a7e8d904f8be822c4
OECD (2022). Measuring the environmental impacts of AI compute and applications: the AI footprint. https://www.oecd.org/en/publications/measuring-the-environmental-impacts-of-artificial-intelligence-compute-and-applications_7babf571-en.html
Official Journal of the European Union (2024). Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13 June 2024 laying down harmonised rules on artificial intelligence and amending regulations (Ec) No 300/2008, (Eu) No 167/2013, (Eu) No 168/2013, (Eu) 2018/858, (Eu) 2018/1139 And (Eu) 2019/2144 And Directives 2014/90/Eu, (Eu) 2016/797 And (Eu) 2020/1828 (Artificial Intelligence Act). https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202401689
Pascual, Manuel (2024). Los centros de datos quieren tener sus propios reactores nucleares. El País, 30-04-2024. https://elpais.com/tecnologia/2024-04-30/los-centros-de-datos-quieren-tener-sus-propios-reactores-nucleares.html
Pascual, Manuel (2025a). La IA consumirá en EE UU tanta energía como toda España”. El País, 23-01-2025. https://elpais.com/tecnologia/2025-01-23/la-ia-consumira-en-ee-uu-tanta-energia-como-toda-espana.html
Pascual, Manuel (2025b). Amazon pide un 48% más de agua para sus centros de datos de Aragón. El País, 22-03-2025. https://elpais.com/tecnologia/2025-03-22/amazon-pide-un-48-mas-de-agua-para-sus-centros-de-datos-de-aragon.html
Patterson, David; Gonzalez, Joseph; Le, Quoc; Liang, Chen; Munguia, Lluis-Miquel; Rothchild, Daniel; So, David; Texier, Maud; Dean, Jeff (2021). Carbon emissions and large neural network training. arXiv. https://arxiv.org/abs/2104.10350v3
Pigem, Jordi (2021). Pandemia y posverdad: La vida, la conciencia y la cuarta revolución industrial (1ª ed). Barcelona: Fragmenta Editorial.
Rolnick, David; Donti, Priya L.; Kaack, Lynn H.; Kochanski, Kelly; Lacoste, Alexandre; Sankaran, Kris; Ross, Andrew Slavin; Milojevic-Dupont, Nikola; Jaques, Natasha; Waldman-Brown, Anna; Luccioni, Alexandra; Maharaj, Tegan; Sherwin, Evan D.; Mukkavilli, S. Karthik; Kording, Konrad P.; Gomes, Carla; Ng, Andrew Y.; Hassabis, Demis; Platt, John C.; Creutzig, Felix; Chayes, Jennifer; Bengio, Yoshua (2019). Tackling climate change with machine learning. arXiv. https://doi.org/10.48550/arXiv.1906.05433
Sanuy, Ada (2023). Calculan que la industria de la IA consumirá tanta electricidad como Países Bajos en 2027. La Vanguardia, 14/10/2023. https://www.lavanguardia.com/tecnologia/20231014/9297305/calculan-que-la-industria-de-la-ia-consumira-tanta-electricidad-como-paises-bajos-en-2027-pmv.html
Schoormann, Thorsten; Strobel, Gero; Möller, Frederik; Petrik, Dimitri; Zschech, Patrick (2023). Artificial intelligence for sustainability—A systematic review of information systems literature. Communications of the Association for Information Systems, 52. https://doi.org/10.17705/1CAIS.05209
Schwartz, Roy; Dodge, Jesse; Smith, Noah; Etzioni, Oren (2020). Green AI. Communications of the ACM, 63-12, pp. 54–63. https://doi.org/10.1145/3381831
Slimani, Sana; Omri, Anis; Ben Jabeur, Sami (2025). When and how does artificial intelligence impact environmental performance? Energy Economics, vol. 148, 108643. https://doi.org/10.1016/j.eneco.2025.108643
Stokel-Walker, Chris (2023). The Generative AI race has a dirty secret. Wired, 10 Febr. 2023. https://www.wired.com/story/the-generative-ai-search-race-has-a-dirty-secret
Strubell, Emma; Ganesh, Ananya; McCallum, Andrew (2019). Energy and policy considerations for deep learning in NLP. 57th Annual Meeting of the Association for Computational Linguistics (ACL). Florence, Italy, July 2019. https://doi.org/10.48550/arXiv.1906.02243
Taibo, Carlos (2020). Colapso: Capitalismo terminal, transición ecosocial, ecofascismo (4ª ed.: enero). Catarata.
Tucho, Fernando; García-de-Madariaga, José-María; Vicente, Miguel (2024). El reto de la sostenibilidad medioambiental de los medios en la era de las tecnologías digitales. En: Carrasco-Campos, Angel y Candón Mena, José (eds). Sostenibilidad de los medios en la era digital. Economía política de los medios públicos, privados y comunitarios. Comunicación Social. https://doi.org/10.52495/c5.emcs.30.tam5
Tucho, Fernando; Masanet, María-José; Blanco, Saúl (2014). La cuestión medioambiental en la educación mediática: un reto pendiente. ZER: Revista de Estudios de Comunicación, 19(36), pp. 205-219. https://ojs.ehu.eus/index.php/Zer/article/view/13502
Tucho, Fernando; Vicente, Miguel; García-de-Madariaga, José-María (2017). La cara oculta de la sociedad de la información: el impacto medioambiental de la producción, el consumo y los residuos tecnológicos. Chasqui, (136), pp. 45-61. https://revistachasqui.org/index.php/chasqui/article/view/3321
UNCTAD (2024). Informe sobre la economía digital. Naciones Unidas. https://unctad.org/publication/digital-economy-report-2024
Van Rijmenam, Mark (2023). Building a greener future: The importance of sustainable AI. The Digital Speake. https://www.thedigitalspeaker.com/greener-future-importance-sustainable-ai
Van Wynsberghe, Aimee (2021). Sustainable AI: AI for sustainability and the sustainability of AI. AI Ethics, 1, pp. 213–218. https://doi.org/10.1007/s43681-021-00043-6
Vinuesa, Ricardo; Azizpour, Hossein; Leite, Iolanda; Balaam, Madeline; Dignum, Virginia; Domisch, Sami; Felländer, Anna; Langhans, Simone Daniela; Tegmark, Max; Nerini, Francesco Fuso (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11:233. https://doi.org/10.1038/s41467-019-14108-y
Wang, Quian; Li, Yuanfan; Li, Rongrong (2024). Ecological footprints, carbon emissions, and energy transitions: the impact of artificial intelligence. Humanities and social sciences communications, 11:1043. https://doi.org/10.1057/s41599-024-03520-5
Winner, Langdon (2020). The whale and the reactor: A search for limits in an age of high technology (2nd edition). Chicago: University of Chicago Press.
Wolff, Lasse F.; Kanding, Benjamin; Selvan, Raghavendra (2020). Carbontracker: Tracking and predicting the carbon footprint of training deep learning models. arXiv. https://arxiv.org/abs/2007.03051
Wu, Carole-Jean; Raghavendra, Ramya; Gupta, Udit; Acun, Bilge; Ardalani, Newsha; Maeng, Kiwan; Chang, Gloria; Behram, Fiona Aga; Huang, James; Bai, Charles; Gschwind, Michael; Gupta, Anurag; Ott, Myle; Melnikov, Anastasia; Candido, Salvatore; Brooks, David; Chauhan, Geeta; Lee, Benjamin; Lee, Hsien-Hsin S.; Akyildiz, Bugra; Balandat, Maximilian; Spisak, Joe; Jain, Ravi; Rabbat, Mike; Hazelwood, Kim (2022): Sustainable AI: Environmental implications, challenges and opportunities. arXiv. https://arxiv.org/pdf/2111.00364v2
Wu, Jie; Liu, Tao; Sun, Jiasen (2025). Impact of artificial intelligence on carbon emission efficiency: evidence from China. Environmental Science and Pollution Research, 32, pp. 19450–19461. https://doi.org/10.1007/s11356-023-31139-7
Yadav, Manish; Singh, Gurjeet (2023). Environmental sustainability with artificial intelligence. EPRA International Journal of Multidisciplinary Research (IJMR), 9(5). https://doi.org/10.36713/epra13325
Yu, Yang; Wang, Jiahui; Liu, Yu; Yu, Pingfeng; Wang, Dongsheng; Zheng, Ping; Zhang, Meng (2024). Revisit the environmental impact of artificial intelligence: the overlooked carbon emission source? Frontiers of Environmental Science & Engineering, 18(12): 158. https://doi.org/10.1007/s11783-024-1918-y
Descargas
Publicado
Cómo citar
Descargas
Dimensions
Número
Sección
Licencia
Derechos de autor 2026 Fernando Tucho, José-María García-de-Madariaga

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.