ChatGPT Search as a tool for scholarly tasks: evolution or devolution?
DOI:
https://doi.org/10.3145/infonomy.24.059Palabras clave:
Generative artificial intelligence, AI, Link analysis, Web search, Search engines, Narrative synthesis, Information retrieval, ChatGPT Search, Scholarly tasks, Academic tasks, Quantitative vs. Qualitative, Academic Generative Engine Optimization (A-GEO)Resumen
ChatGPT Search was launched on October 31 by OpenAI as a new AI-powered search engine. Among its features, it stands out for its ability to retrieve information from various online sources, including scholarly databases, which potentially allows the use of this tool for academic tasks, both quantitative and qualitative. To test its features, five academic tasks are designed: two quantitative (collecting hit count estimates from Google Search and scraping bibliometric indicators from ResearchGate); two qualitative tasks (performing a narrative synthesis of an academic topic and generating a brief academic author profile), and a mixed task (identifying, collecting and describing a list of publications from Google Scholar Profiles). The results show the inability of ChatGPT Search to conduct quantitative tasks correctly, fabricating the results (hallucination). Qualitative tasks are performed with better results; however, errors are detected, which prevent recommending the tool without manual analysis and refinement. Finally, the ability to generate links to scientific publications can open up competition among academic sites to be mentioned in the ChatGPT Search responses, giving rise to Academic Generative Engine Optimization (A-GEO).
Citas
Aggarwal, Pranjal; Murahari, Vishvak; Rajpurohit, Tanmay; Kalyan, Ashwin; Narasimhan, Karthik; Deshpande, Ameet (2024). Geo: Generative engine optimization. In: Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 5-16). New York (USA): ACM. https://arxiv.org/pdf/2311.09735
Bains, Callum (2024). The chatbot optimisation game: Can we trust AI web searches? The Guardian, 3 November. https://www.theguardian.com/technology/2024/nov/03/the-chatbot-optimisation-game-can-we-trust-ai-web-searches
Lopezosa, Carlos; Goyanes, Manuel; Codina, Lluís (2024) Acelerando la investigación cualitativa con inteligencia artificial: una guía práctica para el diseño, desarrollo y ejecución de investigación con entrevistas. Barcelona: Universitat de Barcelona. http://hdl.handle.net/2445/211948
Lopezosa, Carlos; Rovira, Cristòfol; Codina, Lluís (2024). La IA generativa y su aplicación al SEO, SEM, analítica web y diseño UX. Barcelona: Universitat Pompeu Fabra, 92 pp. https://doi.org/10.31009/cr.2024.11
Orduña-Malea, Enrique; Alonso-Arroyo, Adolfo (2017). Cybermetric techniques to evaluate organizations using web-based data. Oxford: Chandos Publishing. https://doi.org/10.1016/C2016-0-00399-6
Thelwall, Mike (2010). Webometrics: Emergent or doomed? Information Research: An International Electronic Journal, v. 15, n. 4. https://informationr.net/ir/15-4/colis713.html
Thelwall, Mike; Stuart, David (2006). Web crawling ethics revisited: Cost, privacy, and denial of service. Journal of the American Society for Information Science and Technology, v. 57, n. 13, pp. 1771–1779. https://doi.org/10.1002/asi.20388
Urbano, Cristóbal (2024). Los chatbots de IA generativa como fuentes de tráfico web: aproximación desde la analítica web de un portal de revistas. Anuario ThinkEPI, v.18. https://doi.org/10.3145/thinkepi.2024.e18a31
Wan, Alexander; Wallace, Eric; Klein, Dan (2024). What evidence do language models find convincing? arXiv preprint. https://arxiv.org/pdf/2402.11782
Descargas
Archivos adicionales
Publicado
Cómo citar
Descargas
Dimensions
Número
Sección
Licencia
Derechos de autor 2024 Cristina I. Font-Julián, Enrique Orduña-Malea, Lluís Codina
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.