Generative Engine Optimization en repositorios digitales: optimización de la visibilidad para la IA generativa

Autores/as

DOI:

https://doi.org/10.3145/infonomy.25.034

Palabras clave:

GEO, Generative Engine Optimization, Repositorios digitales, Motores generativos, IA generativa, SEO académico, Repositorios académicos, Optimización, Visibilidad, Inteligencia artificial generativa, LLM, Reference Rate

Resumen

El auge exponencial de la Inteligencia Artificial (IA) generativa y los modelos de lenguaje a gran escala (LLMs) ha redefinido la búsqueda y recuperación de información en la web, migrando del enfoque tradicional de coincidencias de palabras clave y listas de resultados con enlaces a sitios, a la producción de respuestas sintetizadas y conversacionales. Esta transformación está representando un desafío crítico para el tráfico de los repositorios digitales académicos y la Generative Engine Optimization (GEO) surge como una posible respuesta. Las estrategias de optimización SEO actuales resultan insuficientes para que el contenido sea referenciado de manera efectiva por los nuevos motores generativos. El objetivo de este artículo es proponer los primeros lineamientos estratégicos de GEO aplicables a repositorios institucionales para maximizar su visibilidad. La metodología establece un marco teórico que contrasta los enfoques de búsqueda y extrapola las estrategias GEO de la industria a la gestión de repositorios. Se identifican y proponen estrategias como la optimización técnica, la estructura semántica, la calidad de los metadatos, la optimización del contenido, la interoperabilidad, el multilingüismo y la exploración de nuevas métricas. Como conclusión, se plantea que la adopción equilibrada de la GEO puede fortalecer el impacto de los repositorios sin desatender su misión de servicio público centrado en las personas usuarias y de acceso abierto a la producción científica en la era de la IA.

Biografía del autor/a

Danilo Reyes-Lillo, Universitat Pompeu Fabra

Alejandro Morales-Vargas, Universidad de Chile

Cristòfol Rovira, Universitat Pompeu Fabra

Citas

Aggarwal, Pranjal; Murahari, Vishvak; Rajpurohit, Tanmay; Kalyan, Ashwin; Narasimhan, Karthik; Deshpande, Ameet (2024). GEO: Generative Engine Optimization. arXiv:2311.09735v3. https://doi.org/10.48550/arXiv.2311.09735

Amer, Eslam; Elboghdadly, Tamer (2024). The end of the search engine era and the rise of Generative AI: A paradigm shift in information retrieval. In: 2024 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). https://doi.org/10.1109/MIUCC62295.2024.10783559

AppLabx (2025). How to optimize content for generative AI: A Step-by-step GEO checklist. AppLabx - Digital Marketing and Web Agency. https://blog.applabx.com/how-to-optimize-content-for-generative-ai-a-step-by-step-geo-checklist

Bommasani, Rishi; Hudson, Drew A.; Adeli, Ehsan; Altman, Russ; Arora, Simran; Arx, Sydney von; Bernstein, Michael S.; Bohg, Jeannette; Bosselut, Antoine; Brunskill, Emma; Brynjolfsson, Erik; Buch, Shyamal; Card, Dallas; Castellon, Rodrigo; Chatterji, Niladri; Chen, Annie; Creel, Kathleen; Davis, Jared Quincy; Demszky, Dora; Donahue, Chris; Doumbouya, Moussa; Durmus, Esin; Ermon, Stefano; Etchemendy, John; Ethayarajh, Kawin; Fei-Fei, Li; Finn, Chelsea; Gale, Trevor; Gillespie, Lauren; Goel, Karan; Goodman, Noah; Grossman, Shelby; Guha, Neel; Hashimoto, Tatsunori; Henderson, Peter; Hewitt, John; Ho, Daniel E.; Hong, Jenny; Hsu, Kyle; Huang, Jing; Icard, Thomas; Jain, Saahil; Jurafsky, Dan; Kalluri, Pratyusha; Karamcheti, Siddharth; Keeling, Geoff; Khani, Fereshte; Khattab, Omar; Koh, Pang Wei; Krass, Mark; Krishna, Ranjay; Kuditipudi, Rohith; Kumar, Ananya; Ladhak, Faisal; Lee, Mina; Lee, Tony; Leskovec, Jure; Levent, Isabelle; Li, Xiang Lisa; Li, Xuechen; Ma, Tengyu; Malik, Ali; Manning, Christopher D.; Mirchandani, Suvir; Mitchell, Eric; Munyikwa, Zanele; Nair, Suraj; Narayan, Avanika; Narayanan, Deepak; Newman, Ben; Nie, Allen; Niebles, Juan Carlos; Nilforoshan, Hamed; Nyarko, Julian; Ogut, Giray; Orr, Laurel; Papadimitriou, Isabel; Park, Joon Sung; Piech, Chris; Portelance, Eva; Potts, Christopher; Raghunathan, Aditi; Reich, Rob; Ren, Hongyu; Rong, Frieda; Roohani, Yusuf; Ruiz, Camilo; Ryan, Jack; Ré, Christopher; Sadigh, Dorsa; Sagawa, Shiori; Santhanam, Keshav; Shih, Andy; Srinivasan, Krishnan; Tamkin, Alex; Taori, Rohan; Thomas, Armin W.; Tramèr, Florian; Wang, Rose E.; Wang, William; Wu, Bohan; Wu, Jiajun; Wu, Yuhuai; Xie, Sang Michael; Yasunaga, Michihiro; You, Jiaxuan; Zaharia, Matei; Zhang, Michael; Zhang, Tianyi; Zhang, Xikun; Zhang, Yuhui; Zheng, Lucia; Zhou, Kaitlyn; Liang, Percy (2022). On the opportunities and risks of foundation models. https://doi.org/10.48550/arXiv.2108.07258

Buitrago-Ciro, Jairo; Morales-Campos, Estela; Villamizar-Romero, César-Leonardo (2025). ¿Cómo está transformando la inteligencia artificial la comunicación científica? Desafíos, oportunidades y el papel de los actores involucrados: una revisión de alcance. Investigación Bibliotecológica: archivonomía, bibliotecología e información, v. 39, n. 104. https://doi.org/10.22201/iibi.24488321xe.2025.104.59032

Calla Creative (2025). How to write FAQ sections that actually get picked up by AI search. https://callacreative.com/blog/how-to-write-faq-sections-that-actually-get-picked-up-by-ai-search

Castro, Leyla J.; Neumann, Steffen; Schneider, Gabriel (2024). SchemaOrg and JSON-LD for rich metadata integration in the NFDI. https://doi.org/10.5281/zenodo.10830175

Chen, Mahe; Wang, Xiaoxuan; Chen, Kaiwen; Koudas, Nick (2025). Generative Engine Optimization: How to dominate AI search. https://doi.org/10.48550/arXiv.2509.08919

COAR (2023). Good practice advice for managing multilingual and non-English language content in repositories. https://doi.org/10.5281/zenodo.10053918

COAR (2025). Open repositories are being profoundly impacted by AI bots and other crawlers: Report from a COAR Survey. https://coar-repositories.org/news-updates/open-repositories-are-being-profoundly-impacted-by-ai-bots-and-other-crawlers-results-of-a-coar-survey

Daniels, Chris (2025). From SEO to GEO: How agencies are navigating LLM-driven search | Analysis. Campaign Asia. https://www.campaignasia.com/article/from-seo-to-geo-how-agencies-are-navigating-llm-driven-search/501593

Dony, Christophe; Kuchma, Iryna; Ševkušić, Milica (2024). Dealing with multilingualism and non-English content in open repositories: Challenges and perspectives. The journal of electronic publishing, v. 27, n. 1. https://doi.org/10.3998/jep.5455

Farnel, Sharon (2023). Understanding repository functionality and structure. In:

Discoverability in digital repositories, 1st edition, Routledge. http://doi.org/10.4324/9781003216438-4

Font-Julián, Cristina I.; Orduña-Malea, Enrique; Codina, Lluís (2024). ChatGPT Search as a tool for scholarly tasks: evolution or devolution?. Infonomy, v. 2, n. 5. https://doi.org/10.3145/infonomy.24.059

Google Cloud (2025). Prácticas recomendadas para Cloud Storage. https://cloud.google.com/storage/docs/best-practices?hl=es-419

Gozalo-Brizuela, Roberto; Garrido-Merchán, Eduardo C. (2023). A survey of Generative AI Applications. https://doi.org/10.48550/arXiv.2306.02781

Hall, Brody (2025). What is Reference Rate in AI Search? Loganix. https://loganix.com/reference-rate

Hersh, William (2024). Search still matters: information retrieval in the era of generative AI. Journal of the American Medical Informatics Association : JAMIA, v. 31, n. 9. https://doi.org/10.1093/jamia/ocae014

INSIDEA (2025). How can you optimize site speed to improve AI engine indexing and UX?. https://insidea.com/blog/seo/aieo/optimize-site-speed-to-improve-ai-engine-indexing-and-ux

Handley, Rachel (2025). We studied the impact of AI search on SEO traffic. Here’s what we learned. Semrush Blog. https://www.semrush.com/blog/ai-search-seo-traffic-study

Kaiser, Carolin; Kaiser, Jakob; Schallner, Rene; Schneider, Sabrina (2025). A new era of online search? A large-scale study of user behavior and personal preferences during practical search tasks with generative AI versus traditional search engines. En: Proceedings of the extended abstracts of the CHI conference on human factors in computing systems. https://doi.org/10.1145/3706599.3720123

Kelly, Brenna (2025). Investigating ChatGPT Search: Insights from 80 million clickstream records. Semrush Blog. https://www.semrush.com/blog/chatgpt-search-insights/

Law, Ryan; Guan, Xibeijia (2025). New study: AI assistants prefer to cite “fresher” content (17 million citations analyzed). SEO Blog by Ahrefs. https://ahrefs.com/blog/do-ai-assistants-prefer-to-cite-fresh-content/

Lewis, Patrick; Perez, Ethan; Piktus, Aleksandra; Petroni, Fabio; Karpukhin, Vladimir; Goyal, Naman; Küttler, Heinrich; Lewis, Mike; Yih, Wen-tau; Rocktäschel, Tim; Riedel, Sebastian; Kiela, Douwe (2021). Retrieval-augmented generation for knowledge-intensive NLP Tasks. https://doi.org/10.48550/arXiv.2005.11401

Oxford College of Marketing (2025). From SEO to GEO: Why marketers must evolve with the future of search. https://blog.oxfordcollegeofmarketing.com/2025/06/10/from-seo-to-geo-why-marketers-must-evolve-with-the-future-of-search/

McKenzie, Leigh; Ofei, Michael (2025). LLM Visibility: The SEO metric no one Is reporting on (yet). https://backlinko.com/llm-visibility

OpenAIRE (2018). OpenAIRE guidelines and application profile for repository managers and publication platforms 4.0: More detail - More connectivity. https://www.openaire.eu/?view=article&id=2173&catid=61

Orduña-Malea, Enrique; Cabezas-Clavijo, Álvaro (2023). ChatGPT and the potential growing of ghost bibliographic references. Scientometrics, v. 128, n. 9. https://doi.org/10.1007/s11192-023-04804-4

Park, Lehm (2025). Structured data in the AI search era. https://www.brightedge.com/blog/structured-data-ai-search-era

Pekala, Shayna (2018). Microdata in the IR: A low-barrier approach to enhancing discovery of institutional repository materials in Google. The Code4Lib Journal, n. 39. https://journal.code4lib.org/articles/13191?utm_source=chatgpt.com

Pol, Tushar (2025). What Is LLMs.txt & should you use it? https://www.semrush.com/blog/llms-txt/

Reyes-Lillo, Danilo; Morales-Vargas, Alejandro; Rovira, Cristòfol (2025a). Visibility, discoverability, findability, search engine optimization (SEO) and Academic SEO in digital repositories: A scoping review. BiD, v. June, n. 54. https://doi.org/10.1344/BID2025.54.06

Reyes-Lillo, Danilo; Pastor-Ramon, Elena (2024). Use of handle in institutional repositories and its relationship with alternative metrics: A case study in Spanish-speaking America. Hipertext.Net, 29, 211–222. https://doi.org/10.31009/hipertext.net.2024.i29.17

Reyes-Lillo, Danilo; Rovira, Cristòfol; Morales-Vargas, Alejandro (2025b). Factores para aumentar la visibilidad en repositorios digitales: metadatos, interoperabilidad, identificadores persistentes y optimización SEO-GEO. En J. Guallar; M. Vállez; A. Ventura-Cisquella (Coords). Comunicación digital. Tendencias y buenas prácticas (pp. 126-141). Ediciones Profesionales de la Información. https://doi.org/10.3145/cuvicom.09.esp

Sain, Ankit (2025). How to structure content for AI discovery: FAQs, schema & conversational format. https://whitebunnie.com/blog/how-to-structure-content-for-ai-discovery-faqs-schema-conversational-format

SEOJuice (2025). Reference rate - Generative SEO metric explained - Generative Engine Optimization definition. https://seojuice.io/glossary/geo/citation/reference-rate

Shelby, Carolyn (2025). How LLMs interpret content: How to structure information for AI search. Search Engine Journal. https://www.searchenginejournal.com/how-llms-interpret-content-structure-information-for-ai-search/544308

Solatorio, Aivin; Dupriez, Olivier (2024). Efficient metadata enhancement with AI for better data discoverability. https://blogs.worldbank.org/en/opendata/efficient-metadata-enhancement-with-ai-for-better-data-discovera

SocialChampsVISIBLETM (2025). How to build citation-worthy content that AI

models prefer. VisibleTM. https://govisible.ai/blog/how-to-build-citation-worthy-content-that-ai-models-prefer

Tapfuma, Mass Masona; Hoskins, Ruth Geraldine (2022). Adoption of institutional repositories towards realization of digital libraries: The Southern African perspective. In: T. Masenya (Ed.), Innovative technologies for enhancing knowledge access in academic libraries (pp. 156-175). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-6684-3364-5.ch010

Venkit, Pranav Narayanan; Laban, Philippe; Zhou, Yilun; Mao, Yixin; Wu, Chien-Sheng (2024). Search engines in an AI era: The false promise of factual and verifiable source-cited responses. https://doi.org/10.48550/arXiv.2410.22349

Yan, Tony (2025). Schema markup best practices: Structured data that boosts AI citation & SEO. https://quickcreator.io/blog/schema-markup-best-practices-structured-data-ai-seo

Zavalina, Oksana L.; Burke, Mary (2023). User searching in digital repositories. In: Discoverability in digital repositories, Routledge. http://doi.org/10.4324/9781003216438-7

Zhang, Alex (2025). Information retrieval in the age of Generative AI: A mismatch that matters. Legal reference services quarterly. https://doi.org/10.1080/0270319X.2025.2536920

Descargas

Publicado

2025-11-11

Cómo citar

Reyes-Lillo, D., Morales-Vargas, A., & Rovira, C. (2025). Generative Engine Optimization en repositorios digitales: optimización de la visibilidad para la IA generativa . Infonomy, 3(5). https://doi.org/10.3145/infonomy.25.034

Descargas

Los datos de descargas todavía no están disponibles.

Dimensions