Generative Engine Optimization en repositorios digitales: optimización de la visibilidad para la IA generativa
DOI:
https://doi.org/10.3145/infonomy.25.034Palabras clave:
GEO, Generative Engine Optimization, Repositorios digitales, Motores generativos, IA generativa, SEO académico, Repositorios académicos, Optimización, Visibilidad, Inteligencia artificial generativa, LLM, Reference RateResumen
El auge exponencial de la Inteligencia Artificial (IA) generativa y los modelos de lenguaje a gran escala (LLMs) ha redefinido la búsqueda y recuperación de información en la web, migrando del enfoque tradicional de coincidencias de palabras clave y listas de resultados con enlaces a sitios, a la producción de respuestas sintetizadas y conversacionales. Esta transformación está representando un desafío crítico para el tráfico de los repositorios digitales académicos y la Generative Engine Optimization (GEO) surge como una posible respuesta. Las estrategias de optimización SEO actuales resultan insuficientes para que el contenido sea referenciado de manera efectiva por los nuevos motores generativos. El objetivo de este artículo es proponer los primeros lineamientos estratégicos de GEO aplicables a repositorios institucionales para maximizar su visibilidad. La metodología establece un marco teórico que contrasta los enfoques de búsqueda y extrapola las estrategias GEO de la industria a la gestión de repositorios. Se identifican y proponen estrategias como la optimización técnica, la estructura semántica, la calidad de los metadatos, la optimización del contenido, la interoperabilidad, el multilingüismo y la exploración de nuevas métricas. Como conclusión, se plantea que la adopción equilibrada de la GEO puede fortalecer el impacto de los repositorios sin desatender su misión de servicio público centrado en las personas usuarias y de acceso abierto a la producción científica en la era de la IA.Citas
Aggarwal, Pranjal; Murahari, Vishvak; Rajpurohit, Tanmay; Kalyan, Ashwin; Narasimhan, Karthik; Deshpande, Ameet (2024). GEO: Generative Engine Optimization. arXiv:2311.09735v3. https://doi.org/10.48550/arXiv.2311.09735
Amer, Eslam; Elboghdadly, Tamer (2024). The end of the search engine era and the rise of Generative AI: A paradigm shift in information retrieval. In: 2024 International Mobile, Intelligent, and Ubiquitous Computing Conference (MIUCC). https://doi.org/10.1109/MIUCC62295.2024.10783559
AppLabx (2025). How to optimize content for generative AI: A Step-by-step GEO checklist. AppLabx - Digital Marketing and Web Agency. https://blog.applabx.com/how-to-optimize-content-for-generative-ai-a-step-by-step-geo-checklist
Bommasani, Rishi; Hudson, Drew A.; Adeli, Ehsan; Altman, Russ; Arora, Simran; Arx, Sydney von; Bernstein, Michael S.; Bohg, Jeannette; Bosselut, Antoine; Brunskill, Emma; Brynjolfsson, Erik; Buch, Shyamal; Card, Dallas; Castellon, Rodrigo; Chatterji, Niladri; Chen, Annie; Creel, Kathleen; Davis, Jared Quincy; Demszky, Dora; Donahue, Chris; Doumbouya, Moussa; Durmus, Esin; Ermon, Stefano; Etchemendy, John; Ethayarajh, Kawin; Fei-Fei, Li; Finn, Chelsea; Gale, Trevor; Gillespie, Lauren; Goel, Karan; Goodman, Noah; Grossman, Shelby; Guha, Neel; Hashimoto, Tatsunori; Henderson, Peter; Hewitt, John; Ho, Daniel E.; Hong, Jenny; Hsu, Kyle; Huang, Jing; Icard, Thomas; Jain, Saahil; Jurafsky, Dan; Kalluri, Pratyusha; Karamcheti, Siddharth; Keeling, Geoff; Khani, Fereshte; Khattab, Omar; Koh, Pang Wei; Krass, Mark; Krishna, Ranjay; Kuditipudi, Rohith; Kumar, Ananya; Ladhak, Faisal; Lee, Mina; Lee, Tony; Leskovec, Jure; Levent, Isabelle; Li, Xiang Lisa; Li, Xuechen; Ma, Tengyu; Malik, Ali; Manning, Christopher D.; Mirchandani, Suvir; Mitchell, Eric; Munyikwa, Zanele; Nair, Suraj; Narayan, Avanika; Narayanan, Deepak; Newman, Ben; Nie, Allen; Niebles, Juan Carlos; Nilforoshan, Hamed; Nyarko, Julian; Ogut, Giray; Orr, Laurel; Papadimitriou, Isabel; Park, Joon Sung; Piech, Chris; Portelance, Eva; Potts, Christopher; Raghunathan, Aditi; Reich, Rob; Ren, Hongyu; Rong, Frieda; Roohani, Yusuf; Ruiz, Camilo; Ryan, Jack; Ré, Christopher; Sadigh, Dorsa; Sagawa, Shiori; Santhanam, Keshav; Shih, Andy; Srinivasan, Krishnan; Tamkin, Alex; Taori, Rohan; Thomas, Armin W.; Tramèr, Florian; Wang, Rose E.; Wang, William; Wu, Bohan; Wu, Jiajun; Wu, Yuhuai; Xie, Sang Michael; Yasunaga, Michihiro; You, Jiaxuan; Zaharia, Matei; Zhang, Michael; Zhang, Tianyi; Zhang, Xikun; Zhang, Yuhui; Zheng, Lucia; Zhou, Kaitlyn; Liang, Percy (2022). On the opportunities and risks of foundation models. https://doi.org/10.48550/arXiv.2108.07258
Buitrago-Ciro, Jairo; Morales-Campos, Estela; Villamizar-Romero, César-Leonardo (2025). ¿Cómo está transformando la inteligencia artificial la comunicación científica? Desafíos, oportunidades y el papel de los actores involucrados: una revisión de alcance. Investigación Bibliotecológica: archivonomía, bibliotecología e información, v. 39, n. 104. https://doi.org/10.22201/iibi.24488321xe.2025.104.59032
Calla Creative (2025). How to write FAQ sections that actually get picked up by AI search. https://callacreative.com/blog/how-to-write-faq-sections-that-actually-get-picked-up-by-ai-search
Castro, Leyla J.; Neumann, Steffen; Schneider, Gabriel (2024). SchemaOrg and JSON-LD for rich metadata integration in the NFDI. https://doi.org/10.5281/zenodo.10830175
Chen, Mahe; Wang, Xiaoxuan; Chen, Kaiwen; Koudas, Nick (2025). Generative Engine Optimization: How to dominate AI search. https://doi.org/10.48550/arXiv.2509.08919
COAR (2023). Good practice advice for managing multilingual and non-English language content in repositories. https://doi.org/10.5281/zenodo.10053918
COAR (2025). Open repositories are being profoundly impacted by AI bots and other crawlers: Report from a COAR Survey. https://coar-repositories.org/news-updates/open-repositories-are-being-profoundly-impacted-by-ai-bots-and-other-crawlers-results-of-a-coar-survey
Daniels, Chris (2025). From SEO to GEO: How agencies are navigating LLM-driven search | Analysis. Campaign Asia. https://www.campaignasia.com/article/from-seo-to-geo-how-agencies-are-navigating-llm-driven-search/501593
Dony, Christophe; Kuchma, Iryna; Ševkušić, Milica (2024). Dealing with multilingualism and non-English content in open repositories: Challenges and perspectives. The journal of electronic publishing, v. 27, n. 1. https://doi.org/10.3998/jep.5455
Farnel, Sharon (2023). Understanding repository functionality and structure. In:
Discoverability in digital repositories, 1st edition, Routledge. http://doi.org/10.4324/9781003216438-4
Font-Julián, Cristina I.; Orduña-Malea, Enrique; Codina, Lluís (2024). ChatGPT Search as a tool for scholarly tasks: evolution or devolution?. Infonomy, v. 2, n. 5. https://doi.org/10.3145/infonomy.24.059
Google Cloud (2025). Prácticas recomendadas para Cloud Storage. https://cloud.google.com/storage/docs/best-practices?hl=es-419
Gozalo-Brizuela, Roberto; Garrido-Merchán, Eduardo C. (2023). A survey of Generative AI Applications. https://doi.org/10.48550/arXiv.2306.02781
Hall, Brody (2025). What is Reference Rate in AI Search? Loganix. https://loganix.com/reference-rate
Hersh, William (2024). Search still matters: information retrieval in the era of generative AI. Journal of the American Medical Informatics Association : JAMIA, v. 31, n. 9. https://doi.org/10.1093/jamia/ocae014
INSIDEA (2025). How can you optimize site speed to improve AI engine indexing and UX?. https://insidea.com/blog/seo/aieo/optimize-site-speed-to-improve-ai-engine-indexing-and-ux
Handley, Rachel (2025). We studied the impact of AI search on SEO traffic. Here’s what we learned. Semrush Blog. https://www.semrush.com/blog/ai-search-seo-traffic-study
Kaiser, Carolin; Kaiser, Jakob; Schallner, Rene; Schneider, Sabrina (2025). A new era of online search? A large-scale study of user behavior and personal preferences during practical search tasks with generative AI versus traditional search engines. En: Proceedings of the extended abstracts of the CHI conference on human factors in computing systems. https://doi.org/10.1145/3706599.3720123
Kelly, Brenna (2025). Investigating ChatGPT Search: Insights from 80 million clickstream records. Semrush Blog. https://www.semrush.com/blog/chatgpt-search-insights/
Law, Ryan; Guan, Xibeijia (2025). New study: AI assistants prefer to cite “fresher” content (17 million citations analyzed). SEO Blog by Ahrefs. https://ahrefs.com/blog/do-ai-assistants-prefer-to-cite-fresh-content/
Lewis, Patrick; Perez, Ethan; Piktus, Aleksandra; Petroni, Fabio; Karpukhin, Vladimir; Goyal, Naman; Küttler, Heinrich; Lewis, Mike; Yih, Wen-tau; Rocktäschel, Tim; Riedel, Sebastian; Kiela, Douwe (2021). Retrieval-augmented generation for knowledge-intensive NLP Tasks. https://doi.org/10.48550/arXiv.2005.11401
Oxford College of Marketing (2025). From SEO to GEO: Why marketers must evolve with the future of search. https://blog.oxfordcollegeofmarketing.com/2025/06/10/from-seo-to-geo-why-marketers-must-evolve-with-the-future-of-search/
McKenzie, Leigh; Ofei, Michael (2025). LLM Visibility: The SEO metric no one Is reporting on (yet). https://backlinko.com/llm-visibility
OpenAIRE (2018). OpenAIRE guidelines and application profile for repository managers and publication platforms 4.0: More detail - More connectivity. https://www.openaire.eu/?view=article&id=2173&catid=61
Orduña-Malea, Enrique; Cabezas-Clavijo, Álvaro (2023). ChatGPT and the potential growing of ghost bibliographic references. Scientometrics, v. 128, n. 9. https://doi.org/10.1007/s11192-023-04804-4
Park, Lehm (2025). Structured data in the AI search era. https://www.brightedge.com/blog/structured-data-ai-search-era
Pekala, Shayna (2018). Microdata in the IR: A low-barrier approach to enhancing discovery of institutional repository materials in Google. The Code4Lib Journal, n. 39. https://journal.code4lib.org/articles/13191?utm_source=chatgpt.com
Pol, Tushar (2025). What Is LLMs.txt & should you use it? https://www.semrush.com/blog/llms-txt/
Reyes-Lillo, Danilo; Morales-Vargas, Alejandro; Rovira, Cristòfol (2025a). Visibility, discoverability, findability, search engine optimization (SEO) and Academic SEO in digital repositories: A scoping review. BiD, v. June, n. 54. https://doi.org/10.1344/BID2025.54.06
Reyes-Lillo, Danilo; Pastor-Ramon, Elena (2024). Use of handle in institutional repositories and its relationship with alternative metrics: A case study in Spanish-speaking America. Hipertext.Net, 29, 211–222. https://doi.org/10.31009/hipertext.net.2024.i29.17
Reyes-Lillo, Danilo; Rovira, Cristòfol; Morales-Vargas, Alejandro (2025b). Factores para aumentar la visibilidad en repositorios digitales: metadatos, interoperabilidad, identificadores persistentes y optimización SEO-GEO. En J. Guallar; M. Vállez; A. Ventura-Cisquella (Coords). Comunicación digital. Tendencias y buenas prácticas (pp. 126-141). Ediciones Profesionales de la Información. https://doi.org/10.3145/cuvicom.09.esp
Sain, Ankit (2025). How to structure content for AI discovery: FAQs, schema & conversational format. https://whitebunnie.com/blog/how-to-structure-content-for-ai-discovery-faqs-schema-conversational-format
SEOJuice (2025). Reference rate - Generative SEO metric explained - Generative Engine Optimization definition. https://seojuice.io/glossary/geo/citation/reference-rate
Shelby, Carolyn (2025). How LLMs interpret content: How to structure information for AI search. Search Engine Journal. https://www.searchenginejournal.com/how-llms-interpret-content-structure-information-for-ai-search/544308
Solatorio, Aivin; Dupriez, Olivier (2024). Efficient metadata enhancement with AI for better data discoverability. https://blogs.worldbank.org/en/opendata/efficient-metadata-enhancement-with-ai-for-better-data-discovera
SocialChampsVISIBLETM (2025). How to build citation-worthy content that AI
models prefer. VisibleTM. https://govisible.ai/blog/how-to-build-citation-worthy-content-that-ai-models-prefer
Tapfuma, Mass Masona; Hoskins, Ruth Geraldine (2022). Adoption of institutional repositories towards realization of digital libraries: The Southern African perspective. In: T. Masenya (Ed.), Innovative technologies for enhancing knowledge access in academic libraries (pp. 156-175). IGI Global Scientific Publishing. https://doi.org/10.4018/978-1-6684-3364-5.ch010
Venkit, Pranav Narayanan; Laban, Philippe; Zhou, Yilun; Mao, Yixin; Wu, Chien-Sheng (2024). Search engines in an AI era: The false promise of factual and verifiable source-cited responses. https://doi.org/10.48550/arXiv.2410.22349
Yan, Tony (2025). Schema markup best practices: Structured data that boosts AI citation & SEO. https://quickcreator.io/blog/schema-markup-best-practices-structured-data-ai-seo
Zavalina, Oksana L.; Burke, Mary (2023). User searching in digital repositories. In: Discoverability in digital repositories, Routledge. http://doi.org/10.4324/9781003216438-7
Zhang, Alex (2025). Information retrieval in the age of Generative AI: A mismatch that matters. Legal reference services quarterly. https://doi.org/10.1080/0270319X.2025.2536920
Descargas
Publicado
Cómo citar
Descargas
Dimensions
Número
Sección
Licencia
Derechos de autor 2025 Danilo Reyes-Lillo, Alejandro Morales-Vargas, Cristòfol Rovira

Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.