Importance of visualizing the message extracted with data mining and science. Storytelling with a mixed approach for effective communication

Authors

DOI:

https://doi.org/10.3145/infonomy.24.036

Keywords:

Data mining, Data science, Visual narratives, Storytelling, Perceptual studies, Holistic understanding, Individuality, Collectivity, Glocality (global/local), In-depth interview, Focus group, Mixed method, Qualitative, Quantitative

Abstract

The visualization of the message extracted through data mining and science is fundamental in the effective communication of findings. The combination of storytelling techniques offers a powerful mixed approach to convey complex information accessibly. This strategy is not only familiar but also adaptable to diverse audiences. By reproducing graphics and visual narratives, the goal is not simply to present concrete data, but to provide examples of divergent visual representations. These visual narratives not only allow for a deeper understanding of the data but also facilitate its interpretation and dissemination. Adapted for different contexts and audiences, these tools become key allies in communicating research results and data analysis. In summary, the importance of visualizing the message extracted through data mining and science lies in its ability to effectively convey complex and relevant information through a variety of visual and narrative means.

Author Biographies

Alfonso Vázquez-Atochero, Universidad de Extremadura

Alberto Ledo-Díaz, Universidad de Extremadura

References

Aguirre-Baztán, A. (1995). Etnografía. Metodología cualitativa en la investigación sociocultural. Marcombo.

Brown, T. R. (2023). An introduction to R and Python for data analysis a side-by-side approach. Chapman and Hall/CRC.

Carminotti, M.; Toppi, P. (2020). Metodología de la investigación social: Caja de herramientas. Eudeba.

Cervi, L.; Tejedor, S.; Recoder-Sellarés, M. J. (2024). Qué opinan los periodistas de las herramientas de verificación potenciadas por Inteligencia Artificial. Infonomy, 2(2). https://doi.org/10.3145/infonomy.24.027

Daines, J. G.; Nimer, C. L. (2015). In search of primary source literacy: Opportunities and challenges. RBM: A journal of rare books, manuscripts, and cultural heritage 16(1), 19-34. https://doi.org/10.5860/rbm.16.1.433

Day, A. (2011). Changing the social fabric of organisations: the importance of participation. The Ashridge Journal. https://eoe.leadershipacademy.nhs.uk/wp-content/uploads/sites/6/dlm_uploads/2019/07/1317116794_wmbF_changing_the_social_fabric_of_organisations.pdf

Delaney, C.; Kaspin, D. (2017). Investigating culture: An experiential introduction to anthropology. Wiley-Blackwell.

De-Waal, T.; Van-Delden, A.; Scholtus, S. (2020). Multi-source statistics: Basic situations and methods. International Statistical Review, 88(1), 203-228. https://doi.org/10.1111/insr.12352

Dias-do-Nascimento, J.; Meireles-Gomes, I.; Ribeiro-Lacerda, M.; Braga-de-Camargo, T.; Catafesta-Utzumi, F.; Bernardino, E. (2016). Uso del software NVivo® en una investigación con Teoría Fundamentada. Index de Enfermería, 25(4). https://www.index-f.com/index-enfermeria/v25n4/10639r.php

Consoli, S. (2021). Uncovering the hidden face of narrative analysis: A reflexive perspective through MAXQDA. System, 102. https://doi.org/10.1016/j.system.2021.102611

Flick, U. (2007). El diseño de la investigación cualitativa. Morata.

Grima, P. (2011) La certeza absoluta y otras ficciones (Los secretos de la Estadística). RBA.

Guerrero-Carmona, F. M.; Marcos-Aldón, M. (2014), Procesamiento del lenguaje natural. Revista Instrumental (monografía).

Hernández-Sampieri, R. (2018). Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. McGraw-Hill Interamericana.

Joyanes-Aguilar, L. (2020) Inteligencia de negocios y analítica de datos. Marcombo, Ediciones Técnicas.

Kunicki, Z. J.; Zambrotta, N. S.; Tate, M. C.; Surrusco, A. S.; Risi, M. M.; Harlow, L. L. (2019). Keep your stats in the cloud! Evaluating the use of Google Sheets to teach quantitative methods. Journal of Statistics Education, 27, 188-197. https://doi.org/10.1080/10691898.2019.1665485

Lévi-Strauss, C. (1958). Antropología estructural. Paidós.

Maravelakis, P. (2019). The use of statistics in social sciences. Journal of Humanities and Applied Social Sciences, 1(2), 87-97. https://doi.org/10.1108/JHASS-08-2019-0038

Mathes, E. (2023). Python crash course, 3rd edition: A hands-on, project-based introduction to programming. No Starch Press.

Ñaupas-Paitán, H.; Mejía-Mejía, E.; Novoa-Ramírez, E.; Villagómez-Paucar, A. (2014). Metodología de la investigación cuantitativa - cualitativa y redacción de la tesis. Ediciones de la U.

Ortega-Candel, J. M. (2022). Big data, machine learning y data science en Python. RA-MA S. A. Editorial y Publicaciones.

Paulus, T. M.; Lester, J. N. (2016). Atlas.ti for conversation and discourse analysis studies. International Journal of Social Research Methodology, 19(4), 405-428. https://doi.org/10.1080/13645579.2015.1021949

Poldrack, R. A. (2023) Statistical thinking: Analyzing data in an uncertain world. Princeton University Press.

Ramírez-Mercado, M. (2023). Metodología cualitativa: uso y aplicación de técnicas para el estudio social. México: UNAM, Facultad de Estudios Superiores Aragón.

Sagaró-del-Campo, N.; Zamora-Matamoros, L. (2019). Técnicas estadísticas para identificar posibles relaciones bivariadas. Revista Cubana de Anestesiología y Reanimación, 19(2). https://revanestesia.sld.cu/index.php/anestRean/article/view/603/909

Şahin, M.; Aybek, E. (2019). Jamovi: An easy to use statistical software for the social scientists. International Journal of Assessment Tools in Education, 6(4), 670-692. https://doi.org/10.21449/ijate.661803

Sampedro, V. (2014). El cuarto poder en red. Por un periodismo (de código) libre. Icaria. ISBN: 8498885906

Sarramona, J. (2023). La investigación en ciencias sociales: Posibilidades y limitaciones. Alpha Editorial.

Shepherd, M. A.; Richardson, E. J. (2024). Opting for open-source? A review of free statistical software programs. Teaching Statistics, 46(1), pp. 53-63. https://doi.org/10.1111/test.12360

Sidorenko-Bautista, P.; Herranz-de-la-Casa, J. M. (2024). Realidad extendida, computación espacial y metaverso ¿instrumentos de marketing o evidencias de un cambio de paradigma en la comunicación?. Infonomy, 2(2). https://doi.org/10.3145/infonomy.24.020

Sto.-Tomas, M.; Tindowen, D. J.; Mendezabal, M. J.; Quilang, P.; Agustin, E. T. (2019). The use of PSPP software in learning statistics. European Journal of Educational Research, 8(4), 1127-1136. https://doi.org/10.12973/eu-jer.8.4.1127

Vázquez-Atochero, A. (2012). La tiranía de Gauss. Prejuicios y perjuicios de la normalidad en las ciencias sociales. Revista Caracteres, 1(2) 62-70.

Vicente-Cestero, E.; Mateos-Caballero, A. (2018). Data science y redes complejas. Métodos y aplicaciones. Editorial Universitaria Ramón Areces.

Published

2024-05-04

How to Cite

Vázquez-Atochero, A., & Ledo-Díaz, A. (2024). Importance of visualizing the message extracted with data mining and science. Storytelling with a mixed approach for effective communication. Infonomy, 2(3). https://doi.org/10.3145/infonomy.24.036

Downloads

Download data is not yet available.

Dimensions